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• Project start date: Oct. 1, 2016
• Project end date: Sept. 30, 2020
• Percent complete: 89%

Timeline Barriers and Technical Targets
• Short cycle life: Need functional electrolytes and 

Li metal protection to stabilize electrode/electrolyte 
interface. 

• Low coulombic efficiency: Need functional 
catalysts and soluble additives to decrease large 
overpotential during charging.Budget

• Total project funding: 
• DOE Share: 100%

• Funding for FY19: $200k
• Funding for FY 20: $200k

Partners
• U.S. Army Research Laboratory

Overview



Relevance/Objectives
Relevance
Design and understanding of electrolytes and electrode/electrolyte interface in 
Li-air batteries (LABs) are critical for the development of LAB technology as the 
next-generation of high energy density battery systems for practical 
applications. 

Objectives
Develop innovative electrolytes and Li metal stabilization concepts for stable 
cycling of LABs.
• Develop efficient and reliable electrolytes to improve the efficiency and cycle life of LABs. 
• Develop promising and facile concept to stabilize Li metal anode and air electrode for long-

term cycle life of LABs. 



Milestone Name/Description Milestone
End Date Status

Develop stable electrolytes to minimize the parasitic 
reactions at the electrodes. 12/31/19 Completed

Protect anodes to prevent Li dendrite and LiOH formation. 3/31/20 Completed

Develop stable additives (solid or soluble) or methods for 
sustainable catalytic effect. 6/30/20 On track

Evaluate cycling performance of Li-O2 batteries with 
optimized cell components and conditions. 9/30/20 On track

Milestones



Stabilization of Li metal anode Fluidity O2 & Li salt solubilityStability against 1O2

LABs with longer cycle life

Approaches
• Use a localized high-concentration electrolyte (LHCE) to enhance the stability of the 

electrolyte against singlet oxygen, which is the main cause of parasitic reactions in LABs 
using conventional typical 1 M Tetraglyme-based electrolyte. 

• Investigate fundamental mechanism of LHCE as an effective electrolyte for LABs with 
comparison to a conventional electrolyte and high-concentration electrolyte (HCE). 

• Study effect of different diluents in LHCEs to develop more suitable diluents and 
electrolytes for LABs.



LiTf: Lithium trifluoromethanesulfonate
G4: Tetraethylene glycol dimethyl ether (Tetraglyme or TEGDME)
OTE: 1H,1H,5H-Octafluoropentyl 1,1,2,2-tetrafluoroethyl ether

• Ionic conductivity at 25 °C: 1 M LiTf in G4 > OTE-LHCE > HCE
• Viscosity at 25 °C: 1 M LiTf in G4 < OTE-LHCE <<< HCE
• Discharge capacity at 25 °C: 1 M LiTf in G4 > OTE-LHCE >>> HCE
• Viscosity of electrolyte is a critical factor for performance of LOBs.
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Technical Accomplishments
Effects of conductivity and viscosity of electrolytes on discharge 
capacity of Li-O2 batteries (LOBs)



• Oxidation potential: OTE-LHCE > HCE > 1 M LiTf in G4 
• Cycle life of Li-Li symmetric cell test: OTE-LHCE >>> 1 M LiTf in G4 > HCE
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• LHCE has the highest oxidation potential compared to other electrolytes, which is helpful 
for stable operation of LOBs and LABs during charging. 

• LHCE stabilizes the Li metal anode, which is confirmed by stable stripping and plating 
processes in Li||Li cells.

Li-Li cell 

Technical Accomplishments
Stability of LHCE against Li metal anode and high oxidation 
potential

Li-air electrode cell 



• Cycle life of Li-O2 batteries: OTE-LHCE > 1 M LiTf in G4 > HCE

• LOBs using LHCE exhibit better cycling stability than those using other electrolytes. 
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Technical Accomplishments
Cycling performance of LOBs using different electrolytes



• Calculated stability of electrolytes against 1O2: OTE-LHCE > HCE > 1 M LiTf in G4

• LHCE exhibits the highest stability against singlet oxygen attack.
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Technical Accomplishments
Calculation on the stability of electrolytes against singlet oxygen



• OTE (diluent) is stable against 1O2, but G4 is decomposed by 1O2 attack. 
• It is consistent with the calculated results on the higher stability of OTE-LHCE than HCE 

and 1 M LiTf in G4.
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Technical Accomplishments
NMR analyses for stability of chemicals against singlet oxygen



• SEM images show that the Li metal anode is much more stable in LOB using LHCE than 
those using other electrolytes.   
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Technical Accomplishments
Li metal morphologies after cycling in LOBs
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• O2 solubility at 25 °C: OTE-LHCE >> 1 M LiTf in G4 > HCE
• Viscosity at 25 °C: 1 M LiTf in G4 < OTE-LHCE <<< HCE
• Discharge capacity at 25 °C: OTE-LHCE >>>> 1 M LiTf in G4 > HCE

• O2 solubility in electrolyte as well as viscosity of electrolyte become main limiting 
factors for performance of LABs in ambient air (21% O2).

Technical Accomplishments
Effects of O2 solubility and viscosity of electrolytes on discharge capacity of 
LABs (21% O2)
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• Cycle life of LABs (21% O2): OTE-LHCE >>> 1 M LiTf in G4 > HCE

• LABs (21% O2) with LHCE exhibit much better cycling performance than those using other 
electrolytes. 

Technical Accomplishments
Cycling performance of LABs using different electrolytes
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Technical Accomplishments
Understand the advantages of LHCE for LOBs and LABs 
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LAB or LOB is much more stable with LHCE electrolyte. 



• Viscosity at 25 °C: TFEO-LHCE < 1 M LiTf in G4 < TTE-LHCE < OTE-LHCE <<< HCE

• Conductivity at 25 °C: TTE-LHCE > TFEO-LHCE > 1 M LiTf in G4 > OTE-LHCE > HCE
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Technical Accomplishments
Temperature dependence of viscosity and conductivity of electrolytes



• O2 solubility: TFEO-LHCE > OTE-LHCE > TTE-LHCE  > HCE > 1 M LiTf in G4

• Volatility: HCE ≈ 1 M LiTf in G4 < TFEO-LHCE ≈ OTE-LHCE <<<< TTE-LHCE
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Technical Accomplishments
O2 solubility and volatility of electrolytes



• Cycle life of LOBs: OTE-LHCE >>> 1 M LiTf in G4 > TTE-LHCE > TFEO-LHCE > HCE

• LOBs using OTE-LHCE exhibit longer cycle life than those using other electrolytes.
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Technical Accomplishments
Cycling performance of LOBs using different electrolytes
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• Calculated stability of chemicals against 1O2: OTE > TTE > G4 > TFEO
• OTE exhibits the highest stability against singlet oxygen attack.
• Stability of TFEO is worse than G4, which is the reason for the poor cycle life of LOBs 

using TFEO-LHCE.

Com-
pound

DFT calculation Molecular
weight 
(mol/g)

Boiling 
point 
(°C)

Density
(g/ml)

HOMO 
(eV)

LUMO 
(eV)

TFEO -8.62 -0.18 310.11 143 1.457

TTE -9.61 -0.21 232.07 92 1.532

OTE -10.02 -0.68 332.09 133 1.616

Technical Accomplishments
Stability of different diluents against singlet oxygen 
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Responses to Previous Year’s 
Reviewers’ Comments

• This project was not reviewed last year.



Collaboration
• Dr. Jeffrey Read (U.S. Army Research Laboratory) for measurements of O2 solubility in 

electrolytes and volatility of electrolytes.



Remaining Challenges and Barriers
• Low energy efficiency due to extremely high overpotential during charge.

• The compatibility of LHCE with additives (solid or soluble). 

• Evaporation of electrolyte due to relatively high volatility of diluents. 



Any proposed future work is subject to change based on funding levels.

Proposed Future Research

• Suitable additives (solid or soluble) or methods for sustainable catalytic effects 
should be adapted.

• Optimization of electrolyte components (LHCEs and additives) by evaluation 
of cycling performance of Li-O2 batteries.

• Systematical design and synthesis of stable chemicals as solvents and 
diluents with low vapor pressure, high O2 solubility, good mixability, and wide 
electrochemical redox potential.



Summary
• LHCEs lead to much longer cycling performance for LOBs and LABs due to 

their lower viscosity, better stability with Li metal and reactive singlet oxygen, 
and their higher oxygen solubility.

• OTE is the best diluent for LHCE because of its lower volatility and higher 
stability against reactive singlet oxygen.

• Stability against singlet oxygen is a critical factor in stability of electrolyte and 
cyclability of LOBs and LABs.
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